Modeling neural decoder based on spiking neuronsin DEVS

Yuri Boiko and Gabriel Wainer
Carleton University
1125 Colonel By Drive,
Ottawa, ON, K1S5B6 CANADA
yuri.boiko@r ocketmail.com, gwainer @sce.carleton.ca

DEVS, Brain
neural

Keywords. Discrete event simulation,
Machine, spiking neuron, spiking decoding,
spiking decoder

Abstract

Presented is the simulation of the Neural Spiking
Decoder, thus attaining next level in hierarchy tbé
Brain Machine devices based on the spiking neurons
reported so far and thus further extending the ntedo
simulation of selected elements of Brain Machine in
DEVS environment employing CD++ toolkit. Neural
decoder based on spiking neurons is chosen for lingde
in DEVS formal definitions. Signal of the encoded
ternary alphabet test messages of spike sequesces i
employed to verify functionality of the spiking mau
decoder. Spike sequences are split between twmela
— one for initiating spikes and another one fomieating
ones. Spiking neurons with rectangular responsetiion
are considered in the presented model. Firing itiond
for the spiking neuron is reached when two rectiargu
responses, one for the initiating spike and anabherfor
terminating spike, overlap in time domain, as aultes
producing “1” at the output (firing signal) or aitatively
“0” (non-firing output signal).

1. INTRODUCTION

Modeling of the parts of the Brain Machine is
attracting attention of the simulation and desigsearch
communities [1 — 6] due to expected technologicgact
of the progress in the area as well as due to faignt
benefits, which modeling can offer in optimizatiohthe
design and achieving operational efficiency of the
complex systems, which are expensive to implemedt a
experiment with in hardware. DEVS (Discrete Event
System Specification) methodology recently gained
recognition for its usefulness in modeling varieystems
of artificial and/or natural descent [1]. DEVS rimalism
divides systems under study into atomic modelshickv
contain discrete number of states and is equipptdtie
input and output ports for interaction with eachestand
external environment. In this approach atomic nedee
used as building blocks of more complex coupled etgyd
which constitute next level in the hierarchy of rabd
complexity. In turn, coupled models can be used as

building blocks for the next hierarchical leveldus
opening way of creating models of any desired |afel
sophistication. The discrete representation of tthe
scale of events, in which only meaningful evente ar
accounted for in simulation, allows retaining speéthe
simulation even of highly complex models. CD++lkito

is used for programming the models. Simulation is
implemented in Eclipse integrated environment \sitine
functions implemented as C++ modules.

2. DEVSPROBLEM FORMULATION AND
IMPLEMENTATION
2.1 Model of Spiking Neural Decoder
Spiking neural networks are regarded as a nextrggoe
devices with significant advantage in speed over th
traditional neural network devices [4]. In the pes
study DEVS formalism is employed in defining modél
the neural spiking decoder, which function is tecate
the incoming signal of spike sequences. The inngmi
messages are encoded in terms of time intervaigelest
the initiating and terminating spikes, which herm f
simplicity of recognition are split into two parall but
separate channels. The general structure of ¢eah

spiking decoder under consideration is shown inlFig
5 msec
9 msec_
<> é %msec

Lo

IS
>

A: At=[1, 4] msec @
B: At=[5, 8] msec
C: At=1[9, 12] msec

Figure 1. Schematic of model of the neural spiking
decoder. Alphabet is {A; B; C} with encoding rules
listed via spike intervals. At the input there Hreee
test combinations encoded in time intervals, at the
output — the decoded sequence in terms of {0;1}
triples. Neurons A, B and C are firing “1” in
response to encoded by spikes intervals symbols “A”
“B” and “C”, or outputting “0” otherwise.

N
Z1 Controller-1

1
1
1
1
i
! .. g T mmmmmmmmmmm—m———=—= |
:/ Pulses | signal | Spikina Neuron B !

Timer-1
lnput#2 ~ Jf/ 0 " I ___________________________
Trans- [T TTm-ssss---------------------
L= former | | 2| Controller-2
! ‘ ! Timer-2
! |
! reference |
! e
| Input #1 |mmmmmmmmmmmmmomm oo 1
: i Spiking Neuron C !
' p— - ——— ———— —
1
i - <] Controller-3
' Timer-3
1
|
: | [A
| L —_—— ———————
b o
[top]
conponents : Transforner Neuron Neuronl Neuron2
in: in_1in_2
out : decoder_output control _output control 1_output control 2_out put
Link : in_1 in_1@ransformer
Link : in_2 in_2@ransformer

Link : out_l1@ransformer neuron_on@Neuron
Link : out_2@ransfornmer neuron_of f @Neuron
Li nk : neuron_out @Neur on decoder _out put
Link : cl k_control @euron control _out put

Link : out_1@ransformer neuronl _on@\euronl
Link : out_2@ransformer neuronl_of f @euronl
Li nk : neuronl_out @Neuronl decoder _out put
Link : cl kl_control @Neuronl control 1_out put
% eur on2

Link : out_1@ransformer neuron2_on@\euron2
Link : out_2@ransformer neuron2_of f @euron2
Li nk : neuron2_out @Neur on2 decoder _out put

Li nk : cl k2_control @Neuron2 control 2_out put

Figure 2. Schematic of the Simulator of Spiking Neural Dasro

The incoming message is the series of spikes, whemasec<At < 12 msec for “C”. Spiking neurons A, B and C
symbols are encoded in terms of time intervstibetween are responding to incoming symbol with output af the
odd and even spikes, where odd spikes initiatetitne symbol is respectively “A”, “B” or “C”, while prodecing 0
intervals of the symbol and even spikes termindte ias the output otherwise. In other words, neuronisA
Ternary alphabet is used with symbols selected fitmerset responding with output of 1 if incoming spikes aeparated
{A; B; C}. As itis depicted in Fig.1, the encodjrtable of by At as that for symbol “A” from the encoding tabledan
the alphabet symbols vist intervals is as follows: 1 msec< with output of O otherwise (i.e. for symbols “Bh@ “C").

At < 4 msec for “A”, 5 msecdt < 8 msec for “B”, and 9

Neurons B and C behave similarly, but for spikeshwi
encoded symbols “B” and “C” respectively

22 Spiking Neural Decoder astop model
The top model of Spiking Neural Decoder can be giexi
as shown in Fig.2. This design is relying on atomnd

coupled models developed and tested in the model o

Spiking Neural Terminal, described earlier [5].

Properties of the model of Spiking Neural Decodifed

from that of Spiking Neural Terminal of [5] in that the

Decoder the whole range of the time intervals igeced

with three Neurons A, B and C connected in pardlele

Fig.1 and Fig 2) and therefore given legitimate Bghat

the input the model has to provide response "tHebutput

of the corresponding neuron (i.e. neuron A if inpyinbol
is "A", neuron B if it is "B", and neuron C if isi"C") and
output of "0" at the rest of neurons. Therefore phoperties
of the decoder's model can be formulated as aviolig set

of rules, confirmation for which can be seen in Trable 7

(enumeration of the rules is connected to thabpfr{ order

to emphasize the fact that all these rules areegtlas the

Decoder as the top model here is built from thenataand

coupled models of [5], where Spiking Neural Termiwas

the last level of hierarchy; therefore the firsterunumber
here is (xviii) as the next number after the lagé mumber

in [5]):

(xviii) for legitimate symbol inputs ("A", "B" antiC") there
is always "1" at one firing output and "0" at trest of
firing outputs (where firing outputs are those coisipg
A, B and C outputs in Fig.1 and Fig.2);

(xix) for each control output in SNT Simulator (iable
control_output in Table) there are three consequti
control outputs of the same value ("1" or "-1") time
Decoder Simulator (outputs clk-1, clk-2 and clka3Hig.2
and variables control_output,
control2_output in Table);

Table. Comparative test of Spiking Neural Decoder
and Spiking Neuron Terminal Simulators
(rules xviii-xx).

Output data for the Output data for the
Spiking Neuron Spiking Neural Decoder
Terminal Simulator Simulator

1 2 3

00:00:00:001 control_output 1 00:00:00:001 control_output 1

* | 00:00:00:001 terminal_output 0 00:00:00:001 decoder_output 1
00:00:00:001 control1_output 1
00:00:00:001 decoder_output 0
00:00:00:001 control2_output 1
00:00:00:001 decoder_output 0
00:00:00:013 decoder_output 0
00:00:00:013 decoder_output 0
00:00:00:013 decoder_output 0
00:00:00:015 control_output 1
00:00:00:015 control1_output 1
00:00:00:015 control2_output 1

00:00:00:013 terminal_output 0

00:00:00:015 control_output 1

controll_output and

00:00:00:016 control_output -1

00:00:00:016 terminal_output 0

00:00:00:020 control_output 1

00:00:00:021 control_output -1

00:00:00:022 control_output 1

00:00:00:023 control_output -1

00:00:00:024 control_output 1

00:00:00:025 control_output -1

00:00:00:026 control_output 1

00:00:00:027 control_output -1

00:00:00:028 control_output 1

00:00:00:029 control_output -1

00:00:00:029 terminal_output 0

00:00:00:032 control_output 1

00:00:00:033 control_output -1

00:00:00:034 control_output 1

00:00:00:035 control_output -1

00:00:00:036 control_output 1

00:00:00:036 terminal_output 1

00:00:00:039 control_output 1

00:00:00:040 control_output -1

00:00:00:041 control_output 1

00:00:00:016 control_output -1
00:00:00:016 decoder_output 1
00:00:00:016 control1_output -1
00:00:00:016 decoder_output 0
00:00:00:016 control2_output -1
00:00:00:016 decoder_output 0
00:00:00:020 control_output 1
00:00:00:020 control1_output 1
00:00:00:020 control2_output 1
00:00:00:021 control_output -1
00:00:00:021 control1_output -1
00:00:00:021 control2_output -1
00:00:00:022 control_output 1
00:00:00:022 control1_output 1
00:00:00:022 control2_output 1
00:00:00:023 control_output -1
00:00:00:023 control1_output -1
00:00:00:023 control2_output -1
00:00:00:024 control_output 1
00:00:00:024 control1_output 1
00:00:00:024 control2_output 1
00:00:00:025 control_output -1
00:00:00:025 control1_output -1
00:00:00:025 control2_output -1
00:00:00:026 control_output 1
00:00:00:026 control1_output 1
00:00:00:026 control2_output 1
00:00:00:027 control_output -1
00:00:00:027 control1_output -1
00:00:00:027 control2_output -1
00:00:00:028 control_output 1
00:00:00:028 control1_output 1
00:00:00:028 control2_output 1
00:00:00:029 control_output -1
00:00:00:029 decoder_output 0
00:00:00:029 control1_output -1
00:00:00:029 decoder_output 0
00:00:00:029 control2_output -1
00:00:00:029 decoder_output 1
00:00:00:032 control_output 1
00:00:00:032 control1_output 1
00:00:00:032 control2_output 1
00:00:00:033 control_output -1
00:00:00:033 control1_output -1
00:00:00:033 control2_output -1
00:00:00:034 control_output 1
00:00:00:034 control1_output 1
00:00:00:034 control2_output 1
00:00:00:035 control_output -1
00:00:00:035 control1_output -1
00:00:00:035 control2_output -1
00:00:00:036 control_output 1
00:00:00:036 decoder_output 0
00:00:00:036 control1_output 1
00:00:00:036 decoder_output 1
00:00:00:036 control2_output 1
00:00:00:036 decoder_output 0
00:00:00:039 control_output 1
00:00:00:039 control1_output 1
00:00:00:039 control2_output 1
00:00:00:040 control_output -1
00:00:00:040 control1_output -1
00:00:00:040 control2_output -1
00:00:00:041 control_output 1

00:00:00:042 control_output -1

00:00:00:043 control_output 1

00:00:00:044 control_output -1

00:00:00:045 control_output 1

00:00:00:046 control_output -1

¢ | 00:00:00:046 terminal_output 1

00:00:00:049 control_output 1

00:00:00:050 control_output -1

00:00:00:051 control_output 1

00:00:00:052 control_output -1

00:00:00:053 control_output 1

00:00:00:054 control_output -1
¢ | 00:00:00:054 terminal_output 1

00:00:00:041 control1_output 1
00:00:00:041 control2_output 1
00:00:00:042 control_output -1
00:00:00:042 control1_output -1
00:00:00:042 control2_output -1
00:00:00:043 control_output 1
00:00:00:043 control1_output 1
00:00:00:043 control2_output 1
00:00:00:044 control_output -1
00:00:00:044 control1_output -1
00:00:00:044 control2_output -1
00:00:00:045 control_output 1
00:00:00:045 control1_output 1
00:00:00:045 control2_output 1
00:00:00:046 control_output -1
00:00:00:046 decoder_output 0
00:00:00:046 control1_output -1
00:00:00:046 decoder_output 1
00:00:00:046 control2_output -1
00:00:00:046 decoder_output 0
00:00:00:049 control_output 1
00:00:00:049 control1_output 1
00:00:00:049 control2_output 1
00:00:00:050 control_output -1
00:00:00:050 control1_output -1
00:00:00:050 control2_output -1
00:00:00:051 control_output 1
00:00:00:051 control1_output 1
00:00:00:051 control2_output 1
00:00:00:052 control_output -1
00:00:00:052 control1_output -1
00:00:00:052 control2_output -1
00:00:00:053 control_output 1
00:00:00:053 control1_output 1
00:00:00:053 control2_output 1
00:00:00:054 control_output -1
00:00:00:054 decoder_output 0
00:00:00:054 control1_output -1
00:00:00:054 decoder_output 1
00:00:00:054 control2_output -1
00:00:00:054 decoder_output 0

1 2

3

(xx) for each firing output in SNT Simulator (vabia
terminal_output in the Table) there are three coutee

"ot gt or "0". The rule (xix) is followed too as there are 3
control outputs in the Decoders column for eachtrobn
output in the SNT column. Similarly, the rule (xi9
confirmed by the data of the Table, as there aféiryy
outputs in the Decoders column for each firing atiip the
SNT column. The rule (xxi) is verified by entriesarked by
"*"and "o", while the rule (xxii) by entries with¢™ marks

in the Table.

This concludes design, properties verification and
validation of the top model of Spiking Neural Deeod
Simulator, programmed in CD++ tool employing DEVS
formalism approach. The model is validated atlével of

its atomic components, coupled model componentstgmd
integrated hierarchical level.

3. CONCLUSIONS

The following conclusions can be drawn form the \ebo

considerations.

1. CD++ toolkit is demonstrated as a suitable envirenim
for simulation of the Spiking Neural Decoder, whish
based on model of Spiking Neural Terminal (SNT)
under DEVS formalism.

2. The model of Spiking Neural Decoder is built based
atomic and coupled sub-models involved as basic
elements of reported earlier model of Spiking Neura
Terminal. The expected properties of the Decoder’'s
model are formulated and are subjected to validatio
test, part of which stems from already validatelksu
for SNTs. Validation tests are conducted and the
simulator of Spiking Neral Decoder is validated.

3. Hierarchy of the atomic models of ampilifier, tireerd
controller, as well as coupled models of Pulses
Transformer and Spiking Neuron comprising the
coupled model of Spiking Neural Terminal are shown
to support correct operation of the Decoder’'s model

References:

[1] Zeigler, B.P., The brain-machine disanalogyisigd,

BioSystems, Vol. 64, pp. 127-140. (2002).

firing outputs in the Decoder Simulator (variable[2] Michael Korkinl, Norberto Eiji Nawa, Hugo dea@s,
decoder_output in the Table);

(xxi) for each "0" firing output in SNT Simulatos€e marks
" and "o0" for terminal_output in the Table) there are [3] Obeid, I.
three sequential outputs of either 1, 0, 0 or 01 @see
those marked by respectively "*" for 100 and ly ‘for
001 in the Table) at the Decoder Simulator firingput

(output "Out" in Fig.2);

(xxii) for each "1" firing output in SNT Simulatofsee

A "Spike Interval Information Coding" Representatitor
ATR's CAM-Brain Machine (CBM) Volume 1478 (1998).
Wolf, P.D, "Evaluation of spike-getion
algorithms for a brain-machine interface applicatje
Biomedical Engineering, IEEE Transactions on, Votubd,
Issue 6, page(s) 905- 911, June 2004.

[4] R Mayrhofer, M Affenzeller, H Prahofer, G HofeA.,
“DEVS Simulation of Spiking Neural Networks”,

marks 0" for terminal_output in the Table) there are threeProceedings of Cybernetics and Systems (EMCSRR.200
sequential outputs of 0, 1, 0 at the Decoder Sitoula [5] Y. Boiko and G. Wainer, “Modeling Spiking Nealr
firing output (output "Out" in Fig.2 and variable Terminals in DEVS”,- Proceedings of the 2008 Spring
decoder_output in the Table).

It is seen from the Table, that the rules (xui}ii) are
followed precisely. For instance, the rule (xvig) always
followed for all positions in the Table marked wigither

simulation multiconference, Spring SIM’2008 Poster
Session, Article No. 19 i2008 poster trackOttawa 2008.
[6] Y. Boiko and G. Wainer, “Modeling quantum dot
devices in Cell-DEVS environment”,- ibid., Articho.18.

